Search the Community
Showing results for tags 'rotation speed'.
-
I have been fascinated by Hanyu-senshu's goal of landing a 4A and when I saw his (translated) comment about the 4A: (x) I went digging into the question a bit and thought I'd share my thoughts here. I'm by nature an analytical type of person, so this post is a little "intense", but if this post/topic is not appropriate, please let me know and I'll change/delete it. My intention is just to discuss interesting aspects around the question and admire the hard work Hanyu-senshu has put in, in no way am I trying to be "critical" or "judgmental" in any way. (Because this post is very long, I put some of the content in "spoilers" so that it isn't a loooooong wall of text.) Why am I thinking about this? So these are my assumptions: => Jump "airtime" is related to the height and distance of a jump and therefore the amount of initial energy put into the jump along both horizontal as well as vertical vectors. (You could, for example, do projectile motion along parabolic trajectory calculations using kinematic equations to see how vertical and horizontal movement affects airtime.) => The higher a skater can jump, the longer airtime he has for rotation (more energy into vertical vector). => The faster a skater enters the jump (more energy into horizontal vector), the further the jump and the longer the airtime. => Rotational energy is achieved through body positioning (for example, upper body movement and position) as well as the entry curve of the jump. (Although I think height is the more important vector of the two.) Hanyu-senshu is an athlete who can JUMP REALLY HIGH! IMPORTANT NOTE: Hanyu-senshu's 4As at Torino: So although these numbers are questionable due to poor technology used to look at it, it is possible to theorize that rotation during phase 1 (first 0.5 rotations) are slower than during phase 2 (rest of rotations) and that Hanyu-senshu is able to dedicate about 0.1 seconds to phase 1, about 0.7 seconds to phase 2 and a total of 0.8 seconds for total airtime. (I think jump C was the best of the three attempts). I was wondering if any special tactics could be used to increase the potential success of the 4A. As mentioned before, I believe increasing the entry-speed to increase airtime is not an option. I also don't think faster rotation during phase 1 would work, because the effort during phase 1 is needed to make sure the jump is high enough for good airtime (the cutoff point (in terms of time or rotations) for phase 1 might be shifted though depending on where/how much effort is needed to achieve height). Therefore, a possible place left for optimization is to increase the rotation speed during phase 2. Looking at the numbers, one could speculate in the following: If a total airtime of 0.8 seconds can be achieved and of that 0.1 seconds is used for phase 1 and 0.7 seconds is used for phase 2, 4.5 rotations can be achieved the following way: Phase 1 (0.1 seconds and 0.5 rotations): 5.000 R/sec 300 R/min Phase 2 (0.7 seconds and 4.0 rotations): 5.714 R/sec 343 R/min The highest R/min achieved (with my flawed and rough data) during phase 2 was 321 R/min (5.342 R/sec) (Jump C), the rest of the parameters has been achieved. Rotation speed speculations: I want to also add though that I think it is frightening to think about spinning so fast (and jumping so high) and then needing to land on ice! So many forces on impact, I think it's crazy (and scary) what elite skaters can do. And sometimes I think it would be better if Hanyu-senshu didn't pursue the 4A dream and rather become a life-long artist on ice, creating his own artwork in ice shows, instead of risking injury in competitive skating. But whatever he decides, I know his fans will support him 100%) But anyway, I then had a look at the rotation speeds of Hanyu-senshu's 3As: Comparing his 3A stats with the 4A attempts this shows how much training and work Hanyu-senshu has been putting into this! 3A average duration 0.721 seconds => 4A duration 0.818 seconds 3A average rotation speed 4.870 R/second (292 R/minute) => 4A rotation speed 5.301 R/second (318 R/minute) And I also did a VERY rough "eyeball" estimate of the height of the jump (the problem is estimating where the ice is under the jump). But a VERY rough estimate gave me this: 3A (NHK SP 2019): 0.758 m 4A (attempt at GPF practice 2019): 0.941 m !!! My conclusion is that Hanyu-senshu has been training for the 4A VERY VERY hard and the 4A attempts we saw were ABSOLUTELY MASSIVE jumps! (We can also see this from how much muscle he has gained! I also suspect that his 4A training has been affecting his other jumps. For me this makes sense because until he has his perfect balance of technique for the 4A and have it "locked in", thus experimenting with different speeds, curves, positions etc, it might affect how he does other jumps as well. But also maybe not I'm just speculating hehe) But what I think IS true is that he is jumping higher, is achieving longer airtime and is rotating faster. In terms of how he might reach 4.5 instead of 4.25 rotations, I think... * he is already jumping very high * airtime is already long * perhaps rotating faster after the initial phase (to get height first) is a possible approach to reach more rotations (With this I don't mean a "delayed" rotation, but rather perhaps a slightly different arm movement which first help pull the body UP then to ROTATE. Yes, I know, we are talking about tiny tiny fractions of seconds!) With this in mind, I decided to look at his rotation speed when doing quads (to get an idea what rotation speed he gets there) and compare it with another skater (I picked Nathan since he is his main rival at the moment, although Boyang might also be a good comparison? Anything to learn from Quad Jumps? Speculations about arm movements: So, anyways, I thought I'd share some of my thoughts. Perhaps people with more skating knowledge than me (which is off course 99.99% of other people around the Planet) could correct me where I was thinking wrong or add some information. But I also wanted to highlight that Hanyu-senshu is an amazing athletic jumper (it seems he jumps so high and has so much airtime he can get away with lower rotation speed relative to other skaters! but he has also been increasing his rotation speed) and that he has put in so much work into the 4A and it might not be appreciated enough... to my liking hehehe. I think he has the ability to land a 4A. I actually also believe he has the ability to land a quint. The question is, is it worth the injury risk?
- 36 replies
-
- 16